The hormones of Pregnancy and Childbirth

                                                        Introduction

Hormones play a huge role in pregnancy and in the birth process. It can be especially helpful to know about the main hormones involved with reproduction. By understanding how these hormones function during a natural birth, women can learn how to work with them when they are in labour. At the same time, women can make more informed decisions with their healthcare professionals about medical interventions that can disrupt the natural role of hormones.The correct balance of hormones is essential for a successful pregnancy.  Hormones act as the body’s chemical messengers sending information and feeding back responses between different tissues and organs.  Hormones travel around the body, usually via the blood, and attach to proteins on the cells called receptors – much like a key fits a lock or a hand fits a glove.  In response to this, the target tissue or organ changes its function so that pregnancy is maintained.  Initially, the ovaries, and then later, the placenta, are the main producers of pregnancy-related hormones that are essential in creating and maintaining the correct conditions required for a successful pregnancy.Here is an overview of hormonal interactions.The hormones of birth include estrogen and progesterone, oxytocin, beta-endorphins, prolactin and catecholamines (epinephrine/adrenaline and norepinephrine/noradrenaline.

The early stages of pregnancy

Following conception, a new embryo must signal its presence to the mother, allowing her body to identify the start of pregnancy.  When an egg is fertilised, it travels though the female reproductive tract and on day six implants into the womb releasing a hormone called human chorionic gonadotrophin in the process.  This hormone enters the maternal circulation and allows the mother to recognisethe embryo and begin to change her body to support a pregnancy.

Human chorionic gonadotrophin can be detected in the urine as early as 7-9 days after fertilisation and is used as an indicator of pregnancy in most over-the-counter pregnancy tests.  It is partly responsible for the frequent urination often experienced by pregnant women during the first trimester.  This is because rising levels of human chorionic gonadotrophin causes more blood to flow to the pelvic area and kidneys, which causes the kidneys to eliminate waste quicker than before pregnancy.  Human chorionic gonadotrophin passes through the mother’s blood to the ovaries to regulate the levels of the pro-pregnancy hormones, oestrogen and progesterone.

The role of progesterone and oestrogen during pregnancy

High levels of progesterone are required throughout pregnancy with levels steadily rising until the birth of the baby.  During the first few weeks of pregnancy, progesterone produced from the corpus luteum (a temporary endocrine gland of the ovaries) is sufficient to maintain pregnancy.  At this early stage, progesterone has many diverse functions which are vital to the establishment of pregnancy, including:

a) Increasing blood flow to the womb by stimulating the growth of existing blood vessels
b) Stimulating glands in the lining of the womb (the endometrium) to produce nutrients that sustain the early embryo
c) Stimulating the endometrium to grow and become thickened, producing the decidua, a unique organ that supports the attachment of the placenta and allowing implantation of the embryo
d) Helping to establish the placenta.

As the placenta forms and grows, it develops the ability to produce hormones.  The cells that make up the placenta, known as trophoblasts, are able to convert cholesterol from the mother’s bloodstream into progesterone.  Between weeks 6-9 of pregnancy, the placenta takes over from the ovariesas the main producer of progesterone.  As well as being vital to the establishment of pregnancy, progesterone also has many functions during mid to late pregnancy, including:

a) Being important for correct foetal development
b) Preventing the muscles of the womb contracting until the onset of labour
c) Preventing lactation until after pregnancy
d) Strengthening the muscles of the pelvic wall in preparation for labour.

Although progesterone dominates throughout pregnancy, oestrogen is also very important.  Many of the functions of progesterone require oestrogen and in fact, progesterone production from the placenta is stimulated by oestrogen.  Oestrogen is made and released by the corpus luteum of the ovaries and then later, the foetal-placental unit, where the foetal liver and adrenal glands produce the hormone oestriol (an oestrogen often used to determine foetal wellbeing in pregnancy), that is passed to the placenta where it is converted into other oestrogens.  Levels of this hormone increase steadily until birth and have a wide range of effects, including:

a) Maintaining, controlling and stimulating the production of other pregnancy hormones
b) Needed for correct development of many foetal organs including the lungs, liver and kidneys
c) Stimulating the growth and correct function of the placenta
d) Promoting growth of maternal breast tissue (along with progesterone) and preparing the mother for lactation (breastfeeding).

Other hormones produced by the placenta

The placenta also produces several other hormones including human placental lactogen andcorticotrophin-releasing hormone.  The function of human placental lactogen is not completely understood, although it is thought to promote the growth of the mammary glands in preparation for lactation.  It is also believed to help regulate the mother’s metabolism by increasing maternal blood levels of nutrients for use by the foetus. Corticotrophin-releasing hormone is thought to regulate the duration of pregnancy and foetal maturation.   For example, when pregnant women experience stress, particularly in the first trimester of pregnancy, the placenta increases the production of corticotrophin-releasing hormone.  There is a good reason for this: in the first days of pregnancy, corticotrophin-releasing hormone suppresses the mother’s immune system, preventing the mother’s body from attacking the foetus.  Later in pregnancy, it improves the blood flow between the placenta and foetus.  In the last weeks of pregnancy corticotrophin-releasing hormone levels climb even higher – a rise which coincides with a major spike in cortisol levels. The rise in corticotrophin-releasing hormone and cortisol may help the foetal organs mature just before labour begins, and influence the timing of birth, through production of a ‘late-term cortisol surge’.  This prenatal cortisol surge has also been linked to more attentive mothering in both animals and women, and is thought to be an adaptive response that induces an increased liking for their infant’s body odours, cementing the bond between mother and baby.

Side-effects of pregnancy hormones

High levels of progesterone and oestrogen are important for a healthy pregnancy but are often the cause of some common unwanted side-effects in the mother, especially as they act on the brain.  Until the mother’s body has adapted to the higher levels of these hormones, mood swings can be very common.  The majority of women will experience morning sickness – a feeling of nausea, any time of day, which may lead to vomiting.  The exact cause of morning sickness is unknown but it is likely to be because of the rapid increase in: oestrogen and progesterone; human chorionic gonadotrophin; or a closely related thyroid hormone called thyroid stimulating hormone which decreases during early pregnancy, although it is probably caused by a combination of all these hormonal changes.  Morning sickness usually starts around week 5-6 of pregnancy and should subside by week 12-16, although some women suffer throughout pregnancy.

Many women experience pain and discomfort in the pelvis and lower back during the first trimester.  This is mostly due to a hormone called relaxin.  Relaxin becomes detectable by week 7-10 and is produced throughout pregnancy.  This hormone relaxes the mother’s muscles, joints and ligaments to make room for the growing baby.  The effects of relaxin are most concentrated around the pelvic region; softening the joints of the pelvis can often lead to pain in the area.  The joints being softer can also decrease stability and some women may notice it is harder to balance.  There is also an increase in constipation associated with reduced gut motion because of the relaxin and the growth of the foetus. Although uncomfortable and frustrating at times, all these side-effects will usually lessen or even subside by the end of the first trimester.

Hormones and labour

The hormones of birth include estrogen and progesterone, oxytocin, beta-endorphins, prolactin and catecholamines (epinephrine/adrenaline and norepinephrine/noradrenaline). The exact events leading up to the onset of labour are still not fully understood.  For the baby to arrive, two things must happen: the muscles in the womb and abdominal wall have to contract and the cervix needs to soften, or ripen, allowing passage of the baby from the womb to the outside world.

Estrogen and progesterone are the main hormones involved in “setting the scene” for birth, including activating, inhibiting and reorganizing other hormone systems. They both play a crucial role in the initiation of labour. For example, the placental production of estriol increases by more than 1,000 times close to the onset of labor, and progesterone production increases 10-18 times higher. Estrogen has also been shown to increase the number of uterine oxytocin receptors and gap junctions in late pregnancy, which is thought to prepare the uterus for contractions in labour.

The hormone oxytocin plays a key role in labour.  Some recent studies have found that oxytocin produced by the fetus may directly stimulate the mother’s uterine muscle, suggesting that the baby may be responsible for initiating labour.Often called the ‘love hormone’, oxytocin is associated with feelings of bonding and motherhood.  This is also true of another hormone released during labour called prolactin.  If labour needs to be induced, oxytocin or a synthetic oxytocin equivalent is often administered to ‘kick-start’ the process.  Oxytocin levels rise at the onset of labour, causing regular contractions of the womb and abdominal muscles.  Oxytocin induced contractions become stronger and more frequentwithout the influence of progesterone and oestrogen, which at high levels prevent labour.

The cervix must dilate to 10cm for the baby to pass through.  Oxytocin, along with other hormones, stimulates ripening of the cervix leading to successive dilation during labour.  Oxytocin, with the help of the high levels of oestrogen, causes the release of a group of hormones, known as prostaglandins, which may play a role in ripening of the cervix.  Levels of relaxin also increase rapidly during labour.  This aids the lengthening and softening of the cervix and the softening and expansion of the mother’s lower pelvic region, thereby further aiding the baby’s arrival.

As labour contractions become more intense, natural pain relief hormones are released.  Known as beta-endorphins, they are similar to drugs like morphine and act on the same receptors in the brain.  As well as pain relief, they can also induce feelings elation and happiness in the mother.  As birth becomes imminent, the mother’s body releases large amounts of adrenaline and noradrenaline – so-called ‘fight or flight’ hormones.  A sudden rush of these hormones just before birth causes a surge of energy in the mother and several very strong contractions which help to deliver the baby.

Hormones after labour

When the baby is born, oxytocin continues to contract the womb in order to restrict blood flow to the womb and reduce the risk of bleeding and to help detach the placenta which is delivered shortly afterwards.  Blood levels of oxytocin and prolactin are very high, which supports bonding between the mother and baby.  Skin-to-skin and eye contact between the mother and baby also stimulate the release of oxytocin and prolactin, further encouraging bonding.  Many mothers describe being in a euphoric state just after labour; this is due to the effects of oxytocin, prolactin and beta-endorphins.

Women are actually able to breastfeed at around four months of pregnancy but high levels of progesterone and oestrogen during this time prevent lactation.  After the placenta is delivered during birth, the blood levels of progesterone and oestrogen fall, allowing the mother to produce the first meal of colostrum, a high density milk that contains more protein, minerals and fat-soluble vitamins (A and K) than mature milk, which is eminently suitable for the newborn.  When the baby suckles, oxytocin and prolactin are released from the pituitary, and pass through the mother’s blood to the breast, where prolactin stimulates milk production and oxytocin stimulates milk delivery to the nipple.  As well as stimulating bonding, these hormones also aid milk release and further milk production.  Mature milk that nourishes the baby and induces sleep starts to be produced about four days after birth.The period about two to three days after the birth when the mother may feel tearful and upset is often referred to as the ‘baby blues’, and can be explained in part by the action of hormones. There are a number of factors which contribute to this, and the falling levels of most of the hormones described are probably a major cause. Usually the feelings disappear after a day or two. More serious and prolonged feelings of sadness or helplessness may develop into postnatal depression and mothers (or fathers who also experience this) will need professional help.

Source:

Society for Endocrinology. You & Your Hormones is the official public information website of the Society for Endocrinology

 


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>